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Lattice QCD calculations
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The global CKM fit: results!
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with ∆ms(CDF)
all constraints together

play an essential role in understanding the Standard Model.

In bounds on the ρ-η plane 
incorporating observations of BsBs 
mixing from CDF and D0,

The allowed region depends 
heavily on the accuracy of 
the lattice calculations.
Improving them is a key goal 
for particle physics.

J. Charles, CKMfitter, FPCP 2006.
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Lattice QCD calculations have made 
great progress in recent years.

• Simple quantities agree with experiment to a few %.

• A few quantities have been predicted ahead of 
experiment.

• Lattice calculations are playing an increasingly essential 
role in analysis of experiment.

3
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Quantities that used to agree 
decently, ~10%, in the 
quenched approximation...

Gold-plated quantities.

Staggered fermions,
the least CPU-intensive.

... agree to a few % in recent 
unquenched calculations.
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“Gold-plated quantities” of lattice 
QCD
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Quantities that are easiest for theory and experiment to both 
get right.

Stable particle, one-hadron processes.  Especially mesons.

More complicated methods are required for multihadron processes:  
- unstable particles are messy to interpret, 
- multihadron final states are different in Euclidean and Minkowski 
space.
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Many of the most 
important quantities 
for lattice QCD are
golden quantities.

E.g., measurements 
determining the 
fundamental 
parameters of the 
Standard Model.
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Z =

∫

d[Axµ, ψx,ψx] exp
(

−S(A, ψ, ψ)
)

Independent fields are defined at each point of space-time.  

A continuum quantum field theory is in principle defined by 
an infinite dimensional integral (not a well-defined object).

QFTs must be “regulated”.

Quantum field theories are defined by their path integrals.



Paul Mackenzie Fermilab Wine and Cheese, July 14, 2006

Lattice quantum field theories

8

Approximate the path integral by defining 
the fields on a four dimensional space-
time lattice.

Quarks are defined on the sites
of the lattice, and gluons are SU3 
matrices on the links, U=exp(igA).

Continuum quantum field theory is 
obtained in the zero lattice spacing limit.  
This limit is computationally very 
expensive when Monte Carlo methods 
are used to solve the theory.
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In lattice theories, differential operators are replaced by discrete 
differences.
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In simplest discretization of the Dirac equation

the derivative is replaced by a simple discrete difference (naive and 
staggered fermions).

This produces a propagator with poles not only at the physical value 
pµ =0, but also at pµ =π/a. 

➔ Additional states: the “fermion doubling problem.

(iγµ∂µ −m)ψ = 0

∂ψ(x)→ ψ(x + a)− ψ(x− a)
2a

+O(a2)

(γµpµ −m)−1 → (γµ sin(apµ)/a−m)−1
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Three families of lattice fermions
handle this issue in different ways:

• Staggered/naive

• Good chiral behavior (can get to light quark masses), but fermion doubling 
introduces theoretical complications.  (Must take the root of the fermion 
determinant in numerical simulations.)  Cheap.

• Wilson/clover

• No fermion doubling but horrible chiral behavior.

• Overlap/domain wall

• Nice chiral behavior at the expense of adding a fifth space-time 
dimension.  Expensive.

10

The various methods have wildly incommensurate virtues and 
defects.
Staggered fermion calculations are the cheapest and currently most 
advanced phenomenologically.
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Progress, but also need and opportunity

11

KK mixing

BB mixing

BsBs mixing 

_

_

_

For some quantities, only lattice calculations can unlock the complete 
potential of experimental measurements. 

Lattice QCD needs 
to deliver these 
quantities reliably.  

Bucholz, FPCP 2006

Or else.
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USQCD
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The Fermilab lattice group is part of USQCD, the national collaboration to 
establish computational infrastructure for lattice QCD.  
Currently funded at close to $5M/year = $2.15 M/year (DoE/SciDAC, 
software and hardware R&D) + $2.5M/year (DoE/HEP + Nuclear program, 
hardware).

In FY06, Fermilab is installing a 600 cluster for lattice.

Paul Mackenzie serves on the USQCD Executive Committee, 
Andreas Kronfeld serves on the Scientific Program Committee,
Don Holmgren is national project manager.
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 Cluster Performance Trends
"Asqtad" Lattice QCD Code

Commodity clusters currently give the most bang-for-the-buck for 
lattice computing.

Pion

Kaon

13
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Fermilab lattice hardware site:

Old “New Muon Lab”.

05 installation:

“Pion”:
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In this talk...

• Concentrate on lattice CKM physics phenomenology.

• Unquenched, 2+1 light flavors where possible.

• Concentrate on gold-plated quantities.

• Other interesting things will omit (order of increasing difficulty)

• <B|O|B> expectation values for HQET, etc. (Doable now.)

• Kππ.  (Doable now, but harder.  People are trying.)

• Broad unstable states.  (Being done now, but will be hard to get right.)

• Bππ.   (Good method not yet invented.)

15

Thanks, Richard Hill, Uli Nierste, Masataka Okamoto.
See Okamoto review at Lattice 2005.
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Outline

• Introduction

• Quark masses and αs

• CKM matrix elements

• Decay constants

• MM mixing 

• Semileptonic decays

• Summary

16

_
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Fermilab, HPQCD, MILC

Lattice QCD confronts experiment
Recent progress:

For simple quantities, the 
10%-ish errors visible in the 
“quenched approximation” 
are removed using 
improved staggered 
fermions
(the least computationally 
demanding method).
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αs and mi

18

In lattice calculations, the fundamental lattice 
QCD parameters, αs and mi, are tuned so that 
the hadron spectrum reproduces experiment.

E. g.,
+ + ... = + + ...

Lattice MS
__

MS parameters may be obtained from the lattice parameters by 
requiring that the two regulators produce the same short-distance 
physics.  (Done either perturbatively or nonperturbatively.)

__
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The strong coupling constant, αs

19

9. Quantum chromodynamics 7
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Figure 9.1: Summary of the value of αs(MZ) from various processes. The values
shown indicate the process and the measured value of αs extrapolated to µ = MZ .
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

extracted [44,45] are consistent with the theoretical estimates. If the nonperturbative
terms are omitted from the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series is not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [46] and attempts made to resum the entire series [47,48]. These estimates can
be used to obtain an estimate of the errors due to these unknown terms [49,50]. We
assign an uncertainty of ±0.02 to αs(mτ ) from these sources.

Rτ can be extracted from the semi-leptonic branching ratio from the relation
Rτ = 1/(B(τ → eνν) − 1.97256); where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton
couplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29

September 8, 2004 15:07

On the lattice, tune the quark 
masses and strong coupling 
constant to reproduce observed 
hadron masses,
convert lattice coupling constant to 
continuum coupling constant.

Agrees! (Davies et al.)

Particle Data Group, 2004.

Can be obtained from many 
high energy processes with 
perturbation theory.
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The strong coupling constant, αs
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Figure 9.1: Summary of the value of αs(MZ) from various processes. The values
shown indicate the process and the measured value of αs extrapolated to µ = MZ .
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

extracted [44,45] are consistent with the theoretical estimates. If the nonperturbative
terms are omitted from the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series is not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [46] and attempts made to resum the entire series [47,48]. These estimates can
be used to obtain an estimate of the errors due to these unknown terms [49,50]. We
assign an uncertainty of ±0.02 to αs(mτ ) from these sources.

Rτ can be extracted from the semi-leptonic branching ratio from the relation
Rτ = 1/(B(τ → eνν) − 1.97256); where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton
couplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29

September 8, 2004 15:07

On the lattice, tune the quark 
masses and strong coupling 
constant to reproduce observed 
hadron masses,
convert lattice coupling constant to 
continuum coupling constant.

Can be obtained from many 
high energy processes with 
perturbation theory.

HPQCD, Mason et al., 2005.
Lattice QCD now gives the smallest errors.



Paul Mackenzie Fermilab Wine and Cheese, July 14, 2006 21

A new world average, Bethke, June, 2006:

Table 2: Measurements of αs(MZ0) included in the process to determine the world average, c.f. ta-
ble 1. The rightmost two columns give the exclusive mean value of αs(MZ0) calculated without that
particular measurement, and the number of standard deviations between this measurement and the
respective exclusive mean, treating errors as described in the text. The inclusive average from all listed
measurements gives αs(MZ0) = 0.1189 ± 0.0007.

Process Q [GeV] αs(MZ0) excl. mean αs(MZ0) std. dev.

DIS [Bj-SR] 1.58 0.121 + 0.005
− 0.009 0.1189 ± 0.0008 0.3

τ -decays 1.78 0.1215 ± 0.0012 0.1176 ± 0.0018 1.8

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.1189 ± 0.0008 0.0

DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.1192 ± 0.0008 1.1

DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.1190 ± 0.0008 0.1

Υ decays 4.75 0.118 ± 0.006 0.1190 ± 0.0008 0.2

QQ states 7.5 0.1170 ± 0.0012 0.1200 ± 0.0014 1.6

e+e− [Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1189 ± 0.0008 0.9

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1191 ± 0.0008 0.6

e+e− [jets & shps] 189 0.121 ± 0.005 0.1188 ± 0.0008 0.4

38

10 quantities, 
including lattice.

3rd order PT.
4 loop running.

Table 2: Measurements of αs(MZ0) included in the process to determine the world average, c.f. ta-
ble 1. The rightmost two columns give the exclusive mean value of αs(MZ0) calculated without that
particular measurement, and the number of standard deviations between this measurement and the
respective exclusive mean, treating errors as described in the text. The inclusive average from all listed
measurements gives αs(MZ0) = 0.1189 ± 0.0007.

Process Q [GeV] αs(MZ0) excl. mean αs(MZ0) std. dev.

DIS [Bj-SR] 1.58 0.121 + 0.005
− 0.009 0.1189 ± 0.0008 0.3

τ -decays 1.78 0.1215 ± 0.0012 0.1176 ± 0.0018 1.8

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.1189 ± 0.0008 0.0

DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.1192 ± 0.0008 1.1

DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.1190 ± 0.0008 0.1

Υ decays 4.75 0.118 ± 0.006 0.1190 ± 0.0008 0.2

QQ states 7.5 0.1170 ± 0.0012 0.1200 ± 0.0014 1.6

e+e− [Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1189 ± 0.0008 0.9

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1191 ± 0.0008 0.6

e+e− [jets & shps] 189 0.121 ± 0.005 0.1188 ± 0.0008 0.4

38

threshold matching at the heavy quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Results from
data in ranges of energies are only given for Q = MZ0 . Where available, the table also contains the
contributions of experimental and theoretical uncertainties to the total errors in αs(MZ0).

Finally, in the last two columns of table 1, the underlying theoretical calculation for each mea-
surement and a reference to this result are given, where NLO stands for next-to-leading order, NNLO
for next-next-to-leading-order of perturbation theory, “resum” stands for resummend NLO calculations
which include NLO plus resummation of all leading und next-to-leading logarithms to all orders (see
[39] and [32]), and “LGT” indicates lattice gauge theory.

Figure 17: . Summary of measurements of αs(Q) as a function of the respective energy scale Q, from
table 1. Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in
the respective analysis. The curves are the QCD predictions for the combined world average value of
αs(MZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV.

In figure 17, all results of αs(Q) given in table 1 are graphically displayed, as a function of the
energy scale Q. Those results obtained in ranges of Q and given, in table 1, as αs(MZ0) only, are not
included in this figure - with one exception: the results from jet production in deep inelastic scattering
are represented in table 1 by one line, averaging over a range in Q from 6 to 100 GeV, while in figure 17
combined results for fixed values of Q as presented in [67] are displayed.

28

Good four-loop scaling among all 
quantities.



Paul Mackenzie Fermilab Wine and Cheese, July 14, 2006 22

NNNLO evolution

NNNLO evolution

The lattice αs determination relies on results from > 25 
lattice quantities of different sizes, sampling different 
moment scales.  They show very good four-loop 
scaling among themselves, both quenched and 
unquenched.
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Accurate Determinations of αs from Realistic Lattice QCD

Q. Mason,1 H. D. Trottier,2 C. T. H. Davies,3 K. Foley,4 A. Gray,5 G. P. Lepage,4 M. Nobes,4 and J. Shigemitsu5

(HPQCD and UKQCD Collaborations)
1Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Cambridge, United Kingdom
2Physics Department, Simon Fraser University, Vancouver, British Columbia, Canada

3Department of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
4Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853

5Physics Department, The Ohio State University, Columbus, OH 43210
(Dated: 4 June 2005)

We obtain a new value for the QCD coupling constant by combining lattice QCD simulations
with experimental data for hadron masses. Our lattice analysis is the first to: 1) include vacuum
polarization effects from all three light-quark flavors (using MILC configurations); 2) include third-
order terms in perturbation theory; 3) systematically estimate fourth and higher-order terms; 4)
use an unambiguous lattice spacing; and 5) use an O(a2)-accurate QCD action. We use 28 different

(but related) short-distance quantities to obtain α(5)

MS
(MZ) = 0.1170(12).

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

An accurate value for the coupling constant αs in quan-
tum chromodynamics (QCD) is important both for high-
energy phenomenology, and as an input for possible theo-
ries beyond the Standard Model. Numerical simulations
of QCD using lattice techniques, when combined with ex-
perimental data for hadron masses, have provided some
of the most accurate values for the coupling constant [1].
The precision of these determinations has been limited,
however, by two factors. One was our inability to include
the effects of realistic light-quark vacuum polarization in
QCD simulations. The other limitation was the lack of
third and higher order terms in the perturbative expan-
sions used to extract αs. In this paper we present the
first lattice QCD determination of the coupling constant
that includes realistic vacuum polarization effects from
all three light quarks, and perturbation theory through
third order, with systematic estimates of fourth order
and beyond. Consequently, our final results are, by far,
the most accurate from lattice QCD and among the most
accurate from any method. This work uses gluon config-
urations from the MILC collaboration [2], and builds on
a joint effort by several groups [3].

Effects from light-quark vacuum polarization are quan-
titatively important, but also very costly to simulate.
Previous simulations included contributions from only
u and d quarks, no s quarks, and used quark masses that
were 10 times too large or larger. Our analysis includes
effects from all three light quarks, with much smaller
u and d masses— so small that our results become ef-
fectively mass-independent. This is possible because of
a new discretization of the light-quark action [3]. Heavy-
quark polarization is negligible and is ignored here [4].

The Lorentz-noninvariant ultraviolet regulator greatly
complicates high-order perturbation theory in lattice
QCD. To manage this complexity, we automated the
generation of Feynman integrands using computers, and

evaluated the Feynman integrals numerically on large-
scale parallel computers. These techniques allowed us to
evaluate perturbative coefficients through third order [5].

To extract the coupling constant from our lattice QCD
simulation, we (with our collaborators) first tuned the
theory’s five parameters to reproduce experiment for five
well-measured quantities; the details are in [3]. We
used lattices that were approximately 2.5 fm on a side
with three different lattice spacings a, where a−1 was
1.144(31), 1.596(30), and 2.258(32)GeV. The s quark
masses we used for each of the three lattice spacings were
0.082/a, 0.05/a, and 0.031/a, respectively. We used u
and d masses as small as ms/5, except on the coarsest
lattice where we used ms/10. The gluon configurations
were produced using an improved gluon action and the
new light-quark action. Our coupling-constant analysis
is the first to use O(a2)-accurate actions.

The lattice spacing a is one of the five simulation pa-
rameters, and the most important in our analysis because
it sets the simulation’s mass scale. In our earlier αs anal-
yses, we set the lattice spacing by comparing a simulated
Υ mass splitting (e.g., Υ′−Υ) with experiment. Here we
continue this practice, but, for the first time, the lattice
spacings derived from our Υ splitting have been shown
to agree with spacings derived from a wide variety of
other physical quantities: ten in all, including the pion
and kaon leptonic decay constants, the Bs mass, and the
Ω baryon mass [3, 6]. All of these different quantities
agree on the lattice spacing to within 1.5–3%.

Having an accurately tuned simulation of QCD, we
used it to compute nonperturbative values for a variety
of short-distance quantities, each of which has a pertur-
bative expansion of the form

Y =
∞
∑

n=1

cn αn
V (d/a) (1)

Current lattice result (HPQCD):
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Light quark masses, ms and ml

23

Obtain by matching lattice 
calculations of pion and kaon 
masses to experiment.

Only lattice QCD can obtain these from first principles in a systematically 
improvable way.

Old quark model guess: ms = 150 MeV.

Wrong!

Lattice result:

8

due to the anomalous dimension of the pole mass cancel
in the scale for the matching coefficient).

When |Zm,1(µa)| is anomalously small, a proper eval-
uation of q∗ requires the second-order expression

log(q∗22±) = 〈〈log(q2)〉〉±
[
〈〈log(q2)〉〉2 − 〈〈log2(q2)〉〉

]1/2
,

(34)

where the appropriate root (if the result is real) is usually
made obvious by requiring continuity, and a physically
reasonable value, for the resulting q∗, as a function of
the underlying parameters. The second moment of Zm,1

is given by

〈f(q) log2(q2a2)〉 = −
8

3π
log3(µa) −

10

3π
log2(µa)

+
(π2 − 9)

3π
log(µa) −

5

3π
−

10 ζ3

3π
−

7π

36
+ 3.057. (35)

Results for the first- and (where appropriate) second-
order scales, as functions of µa, are shown in Fig. 5. A
typical value is aq∗ = 1.877 at µa = 1.

III. RESULTS FOR LIGHT-QUARK MASSES

The bare lattice masses for the strange and up/down
quarks, on the MILC “coarse” and “fine” lattices, are
given in Ref. [13]. For the strange quark these are am0s =
0.0390(1)(20)/u0c, and am0s = 0.0272(1)(12)/u0f , on
the coarse and fine lattices respectively, where u0c =
0.86774 and u0f = 0.87821 are tadpole normalization
factors. The uncertainties are lattice statistical and sys-
tematic errors, respectively, the latter due mainly to
chiral extrapolation/interpolation. The lattice spacings
can be found in Ref. [9], a−1

coarse = 1.596(30) GeV, and
a−1
fine = 2.258(32) GeV.
Following conventional practice we quote the light-

quark MS masses at the scale µ = 2 GeV, taking three
active flavors of quarks (nf = 3). The BLM scales on
the two MILC lattices are then aq∗coarse = 2.144 and
aq∗fine = 1.752 [29]. This results in two-loop coefficients
in Eq. (26) of Zm,2|coarse = 1.939(20), and Zm,2|fine =
2.270(20). We also require the couplings at the relevant
scales, and for this purpose we use the recently deter-

mined value α
(nf =3)
V (7.5 GeV) = 0.2082(40) [9]. We find

αV (q∗coarse) = 0.2925(92), and αV (q∗fine) = 0.2713(76)
[29].

Putting all of this together, we obtain the following
values for the MS strange-quark mass, on the two lattices

mMS
s (2 GeV) = 84(5) MeV [coarse],

mMS
s (2 GeV) = 86(4) MeV [fine], (36)

where the errors above are just from the simulation
systematics; we note that these errors are correlated,
because the two bare masses are obtained from a
simultaneous-chiral fit to the two lattice spacings, which

describes the effects of taste-changing and other dis-
cretization effects in the staggered action [5].

We consider continuum extrapolations of these values,
based on the form of the expected leading-discretization
errors, which are of O(αV a2) (we find essentially identical
results by assuming O(α2

V a2) errors [13]). In addition,
we estimate the third-order perturbative correction to
the matching factor, that is, we add a term Zm,3(µa)α3

V
to the right-hand side of Eq. (26), and attempt to esti-
mate its coefficient. To this end, we extend the lattice
renormalization factor Eq. (7) to third order, including
the logarithms from the three-loop anomalous dimension,
which are fixed from the known MS expansion, along
with the known third-order term in Eq. (2) for the MS
mass [21, 22]. This leaves one unknown constant, in
the lattice renormalization factor, A30 in the notation
of Eq. (7), which with the third-order logarithms deter-
mines Zm,3(µa). In principle, one can extract A30, and
hence the third-order correction, from a simultaneous fit
using bare lattice masses at several lattice spacings; this
extends a technique first laid out in Ref. [9] (see also
Ref. [30]).

With only the two available lattice spacings, and hav-
ing also to include a discretization correction in the fit,
we can only roughly bound the size of the next order in
the perturbative expansion. We used constrained curve-
fitting [9, 31] to include our expectation that the expan-
sion is convergent (i.e., |Zm,3(µa)| = O(1) in the notation
of Eq. (26)).

We tested this procedure by considering a fit to the
second-order perturbative correction Zm,2(µa), without
a priori knowledge of the associated constant A20: with
the two lattice spacings as input, and including a dis-
cretization correction, the fit returns A20 = 5.9 ± 1.9, in
good agreement with Eq. (25). The second-order fit also

returns mMS
s (2 GeV) = (85 ± 11) MeV, in good agree-

ment with the “bona-fide” two-loop values in Eq. (36)
[this also represents somewhat of an improvement com-
pared to our earlier result [13], which used only a pri-

ori first-order perturbation theory, without a fit to the
second-order correction, and which somewhat underesti-
mated both the central value and the systematic error
from the truncation of the perturbative series].

When this procedure is applied at third-order, with
A20 input from Eq. (25), the fit provides a reasonable es-
timate of the relative systematic error on the MS mass,
due to the third-order perturbative correction, of approx-
imately 2 × α3

V , or about 4% (there is no appreciable
third-order correction to the MS mass, within this error).
We also use these fits (which include a discretization cor-
rection) to extract the central value of the strange-quark
mass. Our final value is then

mMS
s (2 GeV) = 87(0)(4)(4)(0) MeV (37)

where, following Ref. [13], the respective errors are sta-
tistical, lattice systematic, perturbative, and electromag-
netic/isospin effects.

9

Our result for the ratio of the strange-quark mass to
the up/down-quark masses is unchanged from Ref. [13],
since the renormalization factor is mass independent, as
we have verified explicitly in Sect. II through two-loops
(and up to a negligible mass-dependent discretization
correction)

ms

m̂
= 27.4(1)(4)(0)(1), (38)

where m̂ ≡ 1
2 (mu + md). Equivalently we have

m̂MS(2 GeV) = 3.2(0)(2)(2)(0) MeV (39)

Using a recent determination of the ratio mu/md =
0.43(0)(1)(0)(8) due to the MILC collaboration [32],
these results imply

mMS
u (2 GeV) = 1.9(0)(1)(1)(2) MeV,

mMS
d (2 GeV) = 4.4(0)(2)(2)(2) MeV. (40)

IV. DISCUSSION AND CONCLUSIONS

Perturbation theory has once again shown itself to be
an essential tool in high-precision phenomenological cal-
culations from the lattice. The two-loop lattice diagrams
for the renormalized-quark mass were conquered with
a combination of algebraic and numerical techniques in
this first-ever two-loop evaluation of a multiplicative “ki-
netic” mass on the lattice. When combined with the
known continuum matching from the pole mass to the
MS mass, a very accurate determination of the light-
quark masses was possible. The results presented here
have a number of distinguishing features: two-loop per-
turbation theory; nf = 2 + 1 simulations with two de-
generate light quarks and a heavier strange quark; very
small light quark masses from ms/8 to ms/2 which en-
abled a partially quenched chiral fit with many terms
to thousands of configurations; and extremely accurate
determinations of the lattice spacings, which are equal
within small errors when set from any of a wide variety
of hadronic inputs.

Most notable amongst our results is our new value for
strange quark mass, mMS

s (2 GeV) = 87(0)(4)(4)(0) MeV,
where the respective errors are lattice statistical, lat-
tice systematic (mostly due to the chiral extrapola-
tion/interpolation), perturbative, and due to electromag-
netic/isospin effects. The two-loop matching has in-
creased the central value of our estimates of the light-
quark masses with respect to our previous one-loop de-
termination [13] by about 1.5 standard deviations, based
on the previous estimate of the perturbation-theory un-
certainty. The systematic uncertainty from perturbation
theory has been reduced by about a factor of two, and is
now only about 4%, the same size as the current lattice
systematic uncertainty, the latter due mainly to the chi-
ral extrapolation/interpolation. We anticipate that the

present estimate of the perturbative uncertainty could
be reduced somewhat further, if additional lattice spac-
ings become available, by using the NNLO perturbation
theory presented here to improve the estimate of the
third-order perturbative correction, along the lines that
we have implemented above.

The strange-quark mass determination has histori-
cally generated some controversy, with widely different
values having been obtained from different approaches.
This is reflected in the large uncertainty in the Particle
Data Group’s most recent best estimate, mMS

s (2 GeV) =
(105 ± 25) MeV [33]; our result represents a significant
improvement in precision, resulting from an aggressive
effort to understand and reduce all sources of systematic
error.

An obvious advantage of our result is that it has been
obtained with the correct description of the sea, that is,
with nf = 2 + 1 flavors of dynamical quarks. There is
only one other three-flavor result, which is due to the
CP-PACS and JLQCD collaborations (which did simula-
tions at much larger u/d quark masses than in the MILC
“asqtad” ensembles), which recently reported a value of

mMS
s (2 GeV) = 87(6) MeV [34]; however they do not

include a full error analysis, and in particular the error
from missing higher orders in the perturbative matching
alone should be comparable to that in our older result,
and significantly larger than the errors that we report
here with a 2-loop analysis.

It appears that the most recent estimates of the
strange-quark mass extracted from simulations with only
two flavors of sea quarks are systematically higher than
the estimates with the correct nf , although the other
systematic errors are too large to allow for a definitive
assessment (noting that these two-flavor determinations
were also done with different definitions of the quark
mass and determinations of the lattice spacing from r0

using different physical values for r0). The two-flavor de-
termination from the QCDSF-UKQCD collaboration is
mMS

s (2 GeV) = 100− 130 MeV [35], the ALPHA collab-
oration value is 97(22) MeV [36], and the Rome value is
101(8)

(+25
−9

)
MeV [37]. In this connection, we analyzed

quenched simulations of the “asqtad” action by the MILC
collaboration [3, 5], and we find that this also leads to
a somewhat larger value of the strange quark mass, of
about 96 MeV quenched (using simple linear interpola-
tions of the MILC quenched-meson spectrum results, and
our two-loop perturbative matching formula at nf = 0).

We are currently in the process of applying our NNLO
matching calculation to heavy-quark masses, in order to
complete a high-precision determination of the funda-
mental parameters of QCD. Work is also underway on
the NNLO matching calculations for important hadronic
matrix elements, especially those such as the decay con-
stants fD and fB and other form-factors of particular
relevance to heavy-flavor physics.
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quenched simulations of the “asqtad” action by the MILC
collaboration [3, 5], and we find that this also leads to
a somewhat larger value of the strange quark mass, of
about 96 MeV quenched (using simple linear interpola-
tions of the MILC quenched-meson spectrum results, and
our two-loop perturbative matching formula at nf = 0).

We are currently in the process of applying our NNLO
matching calculation to heavy-quark masses, in order to
complete a high-precision determination of the funda-
mental parameters of QCD. Work is also underway on
the NNLO matching calculations for important hadronic
matrix elements, especially those such as the decay con-
stants fD and fB and other form-factors of particular
relevance to heavy-flavor physics.

HPQCD, Mason et al., 2005.

↑ ≡½(mu+md)≡m̂
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Figure 1. Strong coupling constant αs(MZ ).
Lattice data are from Aoki et al.21, Davies
et al.22, SESAM23, QCDSF-UKQCD24 and its
update25, HPQCD-UKQCD-MILC-Fermilab8 and
its update26.

carried out three-loop calculations and re-
ported a (preliminary) result with a substan-
tially reduced error, αs(MZ) = 0.1175(15),
which is in good agreement with the PDG
2004 average 0.1182(20)27. They use the
simulation data with 2+1 flavors of improved
staggered fermions at three lattice spacings
and confirm that various input quantities
to determine αV (q∗) give a consistent result
within estimated four-loop errors. It should
be noted that the results with the Wilson-
type fermion24,25 is significantly lower. It is
likely an unknown higher order effect, but is
not fully understood.

3.2 Light quark masses

The light (up, down and strange) quark
masses are determined from the pion and
kaon masses, e.g., using the PCAC relation
such as m2

K = B(m̄ + ms) at the leading or-
der of mq. m̄ denotes an average up and down
quark mass and ms is the strange quark mass.
Since the effect of chiral log is not significant
for ms, most of the calculations use a linear
fit in an average light quark mass for interpo-
lation. For the calculation of m̄, on the other
hand, the NLO effect of ChPT is important.

Because mq is regularization dependent,
the lattice results are usually quoted in the

40 60 80 100 120 140

Gimenez et al. (1998)
Becirevic et al. (1998)
JLQCD (1999)
ALPHA-UKQCD (1999)
QCDSF (1999)
Becirevic et al. (1999)
CP-PACS (2000)
CP-PACS (2002)
SPQcdR (2002)

Hernandez et al. (2001)
Giusti et al. (2001)
Chiu-Hsieh (2001)

DeGrand (2003)
Chiu-Hsieh (2003)

Blum et al. (1999)
CP-PACS (2001)
RBC (2001)

CP-PACS (2000)
JLQCD (2002)

CP-PACS/JLQCD (2004)
HPQCD-MILC-UKQCD (2004)

N
f
 = 2

N
f
 = 2+1

SPQcdR (2004)
QCDSF-UKQCD (2004)

Wilson/staggered

overlap

domain-wall

Figure 2. Strange quark mass ms(2GeV) (MeV)
from lattice QCD. Both quenched and unquenched
results are listed. Quenched results (upper panel) are
from Gimenez et al.30, Becirevic et al.31, JLQCD32,
ALPHA-UKQCD33, QCDSF34, Becirevic et al.35,
CP-PACS36,37,
SPQcdR38, Hernandez et al.39, Giusti et al.40,
Chiu-Hsieh41,42, DeGrand43, Blum et al.44, CP-
PACS45, RBC46. Unquenched results are from CP-
PACS36, JLQCD6, QCDSF-UKQCD47, SPQcdR48,
CP-PACS/JLQCD49, HPQCD-MILC-UKQCD50,7.
PDG 200427 average is shown by a dashed band.

MS scheme by using perturbative matching
and sometimes also using non-perturbative
techniques at intermediate steps. For the
case of the Wilson-type fermions, the deter-
mination through axial Ward identity (AWI)
and vector Ward identity (VWI) could be dif-
ferent at finite lattice spacingc.

In Figure 2, I compile the lattice results
for strange quark mass for both quenched and
unquenched calculations. In the quenched
approximation, systematic studies of the non-
perturbative matching and the continuum
extrapolation have been extensively studied
and the results are in agreement within ≈
10% quenching error, which appears as a de-
pendence on the input quantity to set the lat-
tice scale, e.g. mρ, fK , etc.

The CP-PACS36 and JLQCD6 collabo-

cFor further discussions on the quark mass calcula-
tions I refer to 28,29.

Review of many lattice 
determinations of ms was given by 
Hashimoto at ICHEP ’04.

Best value and best method for 
obtaining ms on the lattice are under 
vigorous discussion.

However, it is no longer 
controversial that the old 
“conventional” value of 150 MeV is 
wrong, a fact know only through 
lattice QCD.

HPQCD, Mason et al., 2005.

Light quark masses, ms and ml
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CKM matrix elements
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“CKM matrix with lattice QCD” V
LQCD
CKM

For each CKM element, there exists hadronic processes whose amplitudes

can be reliably calculated from LQCD —

gold-plated quantities: at most one hadron in initial/final states.





Vud Vus Vub

!→ l" K → !l" B→ !l"

Vcd Vcs Vcb

D→ !l" D→ Kl" B→D(∗)l"

D→ l" Ds → l"

Vtd Vts Vtb

〈Bd|Bd〉 〈Bs|Bs〉





〈B|B〉,〈K|K〉,sin (2#) =⇒ {$,%}

Given recent developments (unquenching, improved actions, machines etc.),

we are now in a good position for the full determination of V
LQCD
CKM .

All of the CKM matrix elements except Vtb can be determined from 
one of lattice QCD’s golden quantities.

For some, like Vtd and Vts, 
lattice calculations are the 
only road to accurate 
determinations.
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March 17, 2005 CKM 2005 - Workshop on the Unitarity Triangle

b

4

“Most” of the time,  details of b quark wavefunction 
are unimportant - only averaged properties (i.e.       ) 
matter “Fermi motion”

Theorists love inclusive decays ...

dΓ

d(P.S.)
∼ parton model +

∑

n

Cn

(
ΛQCD

mb

)n

kµ ∼ ΛQCD

〈k2〉

Γ(B̄ → Xu!ν̄!) =
G2

F |Vub|2m5
b

192π3

(
1 − 2.41

αs

π
− 21.3

(
αs

π

)2

+
λ1 − 9λ2

2m2
b

+ O

(
α2

s,
Λ3

QCD

m3
b

))

Decay:  short distance (calculable)
Hadronization:  long distance 
(nonperturbative) - but at leading order, 
long and short distances are cleanly 
separated and probability to hadronize is 
unity

... the basic theoretical tools are more than a decade old 

= {π, K, ...}

CKM matrix elements
may be obtained by matching exclusive hadron amplitudes to 
experiment.

Single particle states are simple to analyze in Euclidean space:
exp(iEt)➞exp(-Et).

Tune Vub to get correct B➞πlν.
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• Tests lattice’s ablility to accurately calculate amplitudes 
by producing new measurements of CKM independent 
quantities that can be checked with the lattice, such 
as                    .

• With good lattice calculations, measures CKM charm 
matrix elements: Vcs and Vcd.

27

Decay constants: fD, fDs

CLEO-c charm physics and the lattice:
Leptonic/Semileptonic ratio

CKM factor |Vcq| canceled in the ratio ( =⇒ a good test of LQCD):

Rcd ≡

√
B(D→ l!)

B(D→ "l!)
#

fD

fD→!
+ (0)

· |Vcd|/

|Vcd|/

LQCD(n f = 2+1), FNAL/MILC
Rcd = 0.22(2)

Exp’t, CLEO-c’05 etc

Rcd = 0.25(2)

200 250

f
D
 [MeV]

2 3 4 5

Br(D!>!l")x10
3

0.20 0.25

R
cd

Exp’t

LQCD

CP!PACS

PDG’04
(CLEO’05)

(FNAL/MILC)

Agree with Exp’t for D physics. =⇒ credibility for B physics
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fD, fDs
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CLEO error dominated by statistics,
will be reduced with full data set.

Lattice error dominated by discretization error
(done on a single lattice spacing).
Will be reduced by in progress calculations on multiple lattice 
spacings.

D→ l! ( fD) results

FNAL/MILC, hep-lat/0506030

(Simone’s poster) n f = 2+1, stag light
S"PT fit to Partially Quenched data
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updated@Lepton-Photon’05

fD = 223(16)sta(+07−09)sys MeV
(with |Vcd| = |Vus| = 0.225)

B(D→ µ!) =
4.45(67)(+29−36)×10−4

⇓

|Vcd| = 0.250(22)lat(21)exp
new!

f
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Agree with exp’t for fD =⇒ credibility for fB

Ds → l! ( fDs) results
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CLEO-c will measure fDs .
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(with |Vcd| = |Vus| = 0.225)

B(D→ µ!) =
4.45(67)(+29−36)×10−4

⇓

|Vcd| = 0.250(22)lat(21)exp
new!

f
n f=2
D = 202(12)sta(+20−25)sysMeV (CP-PACS, prelim, next slide)

Agree with exp’t for fD =⇒ credibility for fB

CLEO-c.  R. Poling, FPCP 2006.

Assumes canonical Vcd.
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fB(s) result (cont’d)
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• good agreement and better accuracy for the ratio fBs/ fB
(smaller !fit error with staggered quarks)

• !-log effect included in Hashimoto’s ICHEP’04 avg
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HPQCD 05.  nf=2+1 staggered light quarks,
NRQCD heavy quarks. 

Okamoto, Lattice 2005

4

Φ(phys.) = 0.496(20) GeV3/2 with again a 4% error. We
take the 4% to be our best estimate for the combined
error from statistics, chiral extrapolation and determina-
tion of a−1. The full QCD SχPT curve in Fig.2 comes
from the floating g2

Bπ fit. We turn next to estimates of
the other systematic errors in Φ(phys.).

A major source of systematic error in Φ(phys.) is higher
order matching of the heavy-light current. Although the
one-loop contributions turned out to be small (as de-
scribed above), in fact much smaller than a naive esti-
mate of O(αs) ∼ 30%, we have no argument guarantee-
ing this to be true at higher orders. Hence we allow for an
O(α2

s) ≈ 9% systematic matching error. This will be the
dominant systematic error in our decay constant deter-
mination. Another source of systematic error comes from
discretization effects. The fine lattice points in Fig.2 lie
about 3 ∼ 5% lower than those from the coarse lattices.
Since the statistical plus scale uncertainty errors on all
our points range between 2 ∼ 3%, it is not obvious how
much of this difference comes from discretization effects.
The size of fluctuations between independent coarse en-
sembles is comparable to this difference. It should also
be noted that the difference between the coarse and fine
lattice data would disappear if it were not for the one-
loop matching corrections (recall the 2 ∼ 4% corrections
on the coarse lattices versus the ∼ 7% corrections on the
fine lattices giving a 3 ∼ 5% difference in the radiative
corrections on the two lattices). In other words it is dif-
ficult to disentangle discretization errors from radiative
corrections. One could quote a combined discretization
and higher order matching error again at the ∼ 9% level.
We opt instead to keep the 9% as the pure (and dominat-
ing) O(α2

s) error and use a conventional naive estimate of
O(a2αs) ≈ 2% for discretization errors. As the last non-
trivial systematic error we estimate uncertainties from
relativistic corrections and tuning of the b quark mass [9]
to be at the ∼ 3% level. Putting all this together we ob-
tain Φ(phys.) = 0.496(20)(45)(10)(15)GeV3/2. This leads
to our result for the B meson decay constant of

fB = 0.216(9)(19)(4)(6) GeV. (5)

The errors, from left to right, come from statistics plus
scale plus chiral extrapolations, higher order matching,
discretization, and relativistic corrections plus mb tun-
ing respectively. Combining this result with our re-
sult for fBs/fB, eq.(4), one finds fBs = 0.259(32)GeV.
This is very consistent with the direct calculation of
fBs published earlier in [5] where we quote a value of
0.260(29)GeV.

To summarize, we have completed a determination of
the B meson decay constant in full (unquenched) QCD.
Our main results are given in eqns. (4) and (5). The
use of a highly improved light quark action has led to

good control over the chiral extrapolation to physical up
and down quarks. Better smearings have significantly
reduced statistical errors. For the ratio fBs/fB these im-
provements translate into an accurate final result with
errors at the ∼ 3% level. For fB itself other systematic
errors not yet addressed in the present study dominate
and the current total error is at the ∼ 10% level. The
main remaining source of uncertainty comes from higher
order operator matching. More studies should also be
carried out on the fine lattices and on even finer lattices
currently being created by the MILC collaboration, to re-
duce discretization uncertainties. Errors in the scale a−1

need to come down for all the ensembles. Improvements
on all these fronts are underway. Calculations of the bag
parameter BB have also been initiated.

This work was supported by the DOE and NSF (USA)
and by PPARC (UK). A.G., J.S. and M.W. thank the
KITP U.C. Santa Barbara for support during the work-
shop, “Modern Challenges in Lattice Field Theory” when
part of the present research was carried out. Simulations
were done at NERSC and on the Fermilab LQCD clus-
ter. We thank Steve Gottlieb and the MILC collabo-
ration for making their dynamical gauge configurations
available. We are also grateful to Jim Simone and the
Fermilab collaboration for use of their light propagators
on the fine lattices and to Claude Bernard for sending us
his notes on SχPT for heavy-light decay constants.
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Paul Mackenzie Fermilab Wine and Cheese, July 14, 2006

fB, fBs

30

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy

0 0.5 1 1.5

m
q
/m

s

0.9

1

1.1

1.2

1.3

!
(B

s) 
/ 
!

(B
q
)

Coarse lattice, Partially Quenched

Coarse lattice, Full QCD

Fine lattice, Full QCD

Full QCD continuum ChPT

Linear fit, no chiral logs
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JLQCD (N
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=2)

Linear fit to JLQCD

fBs/ fB
√
MBs/MB vs. mq/ms

! fits with S!PT, !PT, linear ansatz

=⇒ only 3% difference

insensitive to fit form with mq<ms/2

deviation from JLQCD(n f=2) linear fit

fB = 216(9)sta+!fit(19)PT(7)othersMeV
total 10% (PT O("2) error largest )

fBs/ fB = 1.20(3)sta+!fit(1)others
PT error cancel =⇒ total 3%

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy
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√
MBs/MB vs. mq/ms

! fits with S!PT, !PT, linear ansatz

=⇒ only 3% difference

insensitive to fit form with mq<ms/2

deviation from JLQCD(n f=2) linear fit

fB = 216(9)sta+!fit(19)PT(7)othersMeV
total 10% (PT O("2) error largest )

fBs/ fB = 1.20(3)sta+!fit(1)others
PT error cancel =⇒ total 3%

In fBs/fB, most uncertainties
cancel. 

Wilson/clover results limited to ml>ms/2.
Large uncertainty in chiral extrapolation.

Staggered fermion results reach down
to ml~ms/8.
Smaller errors in chiral extrapolation.

Largest uncertainty in BB/BBs➔Vtd/Vts.
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!"#$%&'()"%%%%%%%%%%%%%%%%%*+,+%-../%%%%%%

f
B
Extraction

! +0")123%"4%5%678"9%)72(:%2"983(93%45 (9)%,!;%6(30$<%7=76793%>?1@>

! A8$9B%>?1@>%C%DEFGH±.FGGI×J.KG 40"6%L*MN

f
B
C%.F-J/±.F.--%N7?%DL+O,PI%

+Q:8F%R7SF%T733F%UVW%-J-..J%D-..VI

Compare with new 
Belle result for fB:

!"#$%&'()"%%%%%%%%%%%%%%%%%*+,+%-../%%%%%%

Constraints on Physics Parameters

! ,!0%1(2(345426

・,"7652($75%$7%584%9!:";%1<(74%
=2"3%584%#"$% >2(7?8$7@%

=2(?5$"7%(7)%&3)

Ikado,
FPCP 2006CKM constraint is fit using 

B→τν/ΔMd.
(fB drops out.)

Much tighter constraints can be 
obtained by incorporating lattice fB 

and BB  (<15%).
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Update on pi and K Physics C. Bernard

As in Ref. [1] we fit the partially quenched lattice data to S!PT forms [4]. The addition of

new runs allows us (sometimes forces us) to change some details of the fits. To determine LO and

NLO chiral parameters we fit only to the low quark-mass region. The cut on valence quark mass

is the same as before: amx + amy ≤ 0.021 ≈ 0.5ams (coarse) and amx + amy ≤ 0.017 ≈ 0.6ams

(fine). We now have enough data to cut on sea-quark masses, too: We remove the 0.03/0.05,

0.02/0.05, and 0.03/0.03 sets for this fit. Because statistical errors are so small, (0.1% to 0.4% for

decay constants, 0.1% to 0.7% for squared meson masses), we still require NNLO analytic terms

in addition to complete NLO forms to get good fits. Such joint fits to decay constants and masses,

including both coarse and fine lattices, have 26 free parameters:

• 2 LO parameters: f and µ (decay constant and condensate at tree-level).

• 8 NLO parameters: 4 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins.

• 10 physical, NNLO analytic parameters.

• 6 tightly constrained parameters (prior width = 0.025): give variation of 2 LO and 4 NLO

physical parameters with lattice spacing.

For interpolation around ms, we must include higher quark masses. Once the LO and NLO

parameters are determined, we fix them (up to statistical errors) and fit to all sea mass sets and wider

ranges of valence masses. For central values we choose the range amx + amy ≤ 0.055 ≈ 1.4ms

coarse, and amx+amy ≤ 0.0353 ≈ 1.3ms fine. This fit is called “Fit C.” For systematic error tests,

the range is widened to amx + amy ≤ 0.10 ≈ 2.5ms coarse, and amx + amy ≤ 0.062 ≈ 2.2ms fine.

With either of these choices, we need to add in the NNNLO analytic terms (18 parameters, cubic

in quark masses for f" and M
2
"/(mx+my)) to get good fits.

With our old data set, m′
s only changed with a, and m

′
s was usually significantly larger than m̂

′,

so the sea quark mass dependence and a dependence were difficult to disentangle. The new data,

which includes coarse lattices with am′
s = 0.03 in addition to the previous value am′

s = 0.05, gives

better control of the sea quark mass dependence and smaller a dependence of the LO, NLO, and

NNLO parameters. Including the NNNLO terms and the a dependence of the NNLO terms gives

28 parameters more than the low-mass fits described above, for a total of 56 parameters. Twelve of

these (LO, LO a dependence, and NLO parameters) are tightly constrained from the low-mass fits.

Figure 1 shows Fit C results for f" and fK . This fit has !
2/d.o.f. = 0.99 for 556 degrees

of freedom (confidence level CL=0.59). In each plot, the maroon line is the “prediction” for the

0.0031/.031 fine run based on a second fit that leaves out that run; it should be compared with the

solid black line that comes from Fit C. Since the time of the conference, we have accumulated about

25% more 0.0031/.031 configurations, and the effect of removing or including this run in the fit has

decreased. Given that the CL decreases when the run is removed, we no longer see any reason to

consider omitting the run. We note that the 0.0031/.031 run is still only about half finished, so there

will probably be further noticeable shifts. In the fK plot, two “experimental” points (shifted slightly

to the left for clarity) are shown. Both points are based on the measured leptonic (K→ !#) rate, but

×+ assumes the PDG valueVus = 0.2200(26) [11]; while× assumes the results of recent experiments
Vus = 0.2262(23) [12]. Both these values of Vus come from experimental determinations of the

semileptonic (K → "!#) rate and non-lattice theory for form factors.

Our preliminary results for decay constants are:

f" = 128.1±0.5±2.8 MeV , fK = 153.5±0.5±2.9 MeV , fK/ f" = 1.198(3)(+16− 5) ,
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Update on pi and K Physics C. Bernard

As in Ref. [1] we fit the partially quenched lattice data to S!PT forms [4]. The addition of

new runs allows us (sometimes forces us) to change some details of the fits. To determine LO and

NLO chiral parameters we fit only to the low quark-mass region. The cut on valence quark mass

is the same as before: amx + amy ≤ 0.021 ≈ 0.5ams (coarse) and amx + amy ≤ 0.017 ≈ 0.6ams

(fine). We now have enough data to cut on sea-quark masses, too: We remove the 0.03/0.05,

0.02/0.05, and 0.03/0.03 sets for this fit. Because statistical errors are so small, (0.1% to 0.4% for

decay constants, 0.1% to 0.7% for squared meson masses), we still require NNLO analytic terms

in addition to complete NLO forms to get good fits. Such joint fits to decay constants and masses,

including both coarse and fine lattices, have 26 free parameters:

• 2 LO parameters: f and µ (decay constant and condensate at tree-level).

• 8 NLO parameters: 4 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins.

• 10 physical, NNLO analytic parameters.

• 6 tightly constrained parameters (prior width = 0.025): give variation of 2 LO and 4 NLO

physical parameters with lattice spacing.

For interpolation around ms, we must include higher quark masses. Once the LO and NLO

parameters are determined, we fix them (up to statistical errors) and fit to all sea mass sets and wider

ranges of valence masses. For central values we choose the range amx + amy ≤ 0.055 ≈ 1.4ms

coarse, and amx+amy ≤ 0.0353 ≈ 1.3ms fine. This fit is called “Fit C.” For systematic error tests,

the range is widened to amx + amy ≤ 0.10 ≈ 2.5ms coarse, and amx + amy ≤ 0.062 ≈ 2.2ms fine.

With either of these choices, we need to add in the NNNLO analytic terms (18 parameters, cubic

in quark masses for f" and M
2
"/(mx+my)) to get good fits.

With our old data set, m′
s only changed with a, and m

′
s was usually significantly larger than m̂

′,

so the sea quark mass dependence and a dependence were difficult to disentangle. The new data,

which includes coarse lattices with am′
s = 0.03 in addition to the previous value am′

s = 0.05, gives

better control of the sea quark mass dependence and smaller a dependence of the LO, NLO, and

NNLO parameters. Including the NNNLO terms and the a dependence of the NNLO terms gives

28 parameters more than the low-mass fits described above, for a total of 56 parameters. Twelve of

these (LO, LO a dependence, and NLO parameters) are tightly constrained from the low-mass fits.

Figure 1 shows Fit C results for f" and fK . This fit has !
2/d.o.f. = 0.99 for 556 degrees

of freedom (confidence level CL=0.59). In each plot, the maroon line is the “prediction” for the

0.0031/.031 fine run based on a second fit that leaves out that run; it should be compared with the

solid black line that comes from Fit C. Since the time of the conference, we have accumulated about

25% more 0.0031/.031 configurations, and the effect of removing or including this run in the fit has

decreased. Given that the CL decreases when the run is removed, we no longer see any reason to

consider omitting the run. We note that the 0.0031/.031 run is still only about half finished, so there

will probably be further noticeable shifts. In the fK plot, two “experimental” points (shifted slightly

to the left for clarity) are shown. Both points are based on the measured leptonic (K→ !#) rate, but

×+ assumes the PDG valueVus = 0.2200(26) [11]; while× assumes the results of recent experiments
Vus = 0.2262(23) [12]. Both these values of Vus come from experimental determinations of the

semileptonic (K → "!#) rate and non-lattice theory for form factors.

Our preliminary results for decay constants are:

f" = 128.1±0.5±2.8 MeV , fK = 153.5±0.5±2.9 MeV , fK/ f" = 1.198(3)(+16− 5) ,

MILC 05.  nf=2+1 staggered.
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Update on pi and K Physics C. Bernard

Figure 1: Left: Comparison of Fit C to partially quenched f! data. Extrapolation to continuum, setting

m′
s =ms, and going to full QCD gives the red line. Red + shows the final result after extrapolationmx,my→

m̂. The maroon line (just barely visible above the black line) is the prediction for the 0.0031/0.031 fine run

(black squares) based on the other data. Right: Same as left, but for fK . The short green continuation of the

red line keeps light sea masses fixed at the average physical value m̂ and extrapolatesmx→mu.

where the errors are from statistics and lattice systematics. These results are consistent with our

previous answers [1], with slightly smaller errors. The current Nf = 3 results for quark masses are

little changed from those in Refs. [1, 13].

We extract Vus from our fK/ f! result. This is probably safer than using fK itself, because the

ratio is largely free of scale errors. We obtain |Vus| = 0.2242(+11−31), which is consistent with world-

average values, with comparably sized errors. From Fig. 1, one can deduce that using fK alone

would result in a somewhat higher value of Vus. The difference comes from the fact that our f!

result is slightly low compared with experiment, although consistent within errors. Runs planned

for the near future, as well as those now in progress, should allow a further reduction in the errors.

We now turn to the quenched data. We fit to the same valence mass range as the Nf = 3 Fit C.

Again, terms through NNNLO are needed; joint fits to decay constants and masses, including both

coarse and fine lattices, have 34 free parameters:

• 3 LO parameters: f , µ , and the quenched chiral parameter " [14]. We consider " to be “LO”

because its effects are not suppressed by powers of quark mass.

• 7 NLO parameters: 2 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins,

and the quenched chiral parameter # [14].

• 4 physical, NNLO analytic parameters.

• 4 physical, NNNLO analytic parameters.

• 14 tightly constrained parameters (prior width = 0.04): give variation of 2 LO, 4 NLO, 4

NNLO, and 4 NNNLO physical parameters with lattice spacing.

• 2 parameters to allow the r1 scale on the coarse and fine lattices to vary within 1$ .

The parameter " multiplies a function of the taste-singlet mass, which is large (>∼500MeV) on
coarse lattices because of taste splitting. The coarse lattices are therefore insensitive to quenched

Chiral extrapolation of fK.

Leptonic decay experiment + “old” Vus.

Leptonic decay experiment + “new” Vus.

P
o
S
(
L
A
T
2
0
0
5
)
0
2
5

Update on pi and K Physics C. Bernard

Figure 1: Left: Comparison of Fit C to partially quenched f! data. Extrapolation to continuum, setting

m′
s =ms, and going to full QCD gives the red line. Red + shows the final result after extrapolationmx,my→

m̂. The maroon line (just barely visible above the black line) is the prediction for the 0.0031/0.031 fine run

(black squares) based on the other data. Right: Same as left, but for fK . The short green continuation of the

red line keeps light sea masses fixed at the average physical value m̂ and extrapolatesmx→mu.

where the errors are from statistics and lattice systematics. These results are consistent with our

previous answers [1], with slightly smaller errors. The current Nf = 3 results for quark masses are

little changed from those in Refs. [1, 13].

We extract Vus from our fK/ f! result. This is probably safer than using fK itself, because the

ratio is largely free of scale errors. We obtain |Vus| = 0.2242(+11−31), which is consistent with world-

average values, with comparably sized errors. From Fig. 1, one can deduce that using fK alone

would result in a somewhat higher value of Vus. The difference comes from the fact that our f!

result is slightly low compared with experiment, although consistent within errors. Runs planned

for the near future, as well as those now in progress, should allow a further reduction in the errors.

We now turn to the quenched data. We fit to the same valence mass range as the Nf = 3 Fit C.

Again, terms through NNNLO are needed; joint fits to decay constants and masses, including both

coarse and fine lattices, have 34 free parameters:

• 3 LO parameters: f , µ , and the quenched chiral parameter " [14]. We consider " to be “LO”

because its effects are not suppressed by powers of quark mass.

• 7 NLO parameters: 2 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins,

and the quenched chiral parameter # [14].

• 4 physical, NNLO analytic parameters.

• 4 physical, NNNLO analytic parameters.

• 14 tightly constrained parameters (prior width = 0.04): give variation of 2 LO, 4 NLO, 4

NNLO, and 4 NNNLO physical parameters with lattice spacing.

• 2 parameters to allow the r1 scale on the coarse and fine lattices to vary within 1$ .

The parameter " multiplies a function of the taste-singlet mass, which is large (>∼500MeV) on
coarse lattices because of taste splitting. The coarse lattices are therefore insensitive to quenched

(cf. 0.2200(26) (old); 
      0.2262(23) (new).)

Light quark masses essential.
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

JLQCD, 03
nf=2 clover light,
NRQCD heavy quarks.

Combine with HPQCD fB to obtain:

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
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2. Mass difference ∆m

∆m is measured from the B−B oscillations, which are governed by cos(∆mt):

A0(t) =
Γ(B(t) → f) − Γ(B(t) → f)
Γ(B(t) → f) + Γ(B(t) → f)

=
cos(∆m t)

cosh(∆Γ t/2)

Eq. (1.81) from B physics at the Tevatron

Local four-quark operator:

Q = qLγνbL qLγνbL

Theoretical uncertainty dominated by matrix element:

〈B0 |Q|B0 〉 =
2
3
m2
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D0:  17<Δms<21 ps-1 @90% CL; 2.3σ
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Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM
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 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}
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fB(s) result
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Figure 12: Combined likelihood ratio as a function of ∆ms

(CDF).

provide information about the B0
s production flavor.

A significant peak in the amplitude scan consistent
with unity is observed. Assuming this is a signal for
B0

s − B̄0
s oscillations, CDF measures

∆ms = 17.31+0.33
−0.18 (stat.) ± 0.07 (syst.) ps−1 .

The B0
s−B̄0

s oscillation frequency measured at CDF
is used to derive the ratio |Vtd/Vts|,

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= ξ

√

∆mdMB0
s

∆msMB0

d

= 0.208+0.001
−0.002 (exp.)+0.008

−0.006 (theo.) ,

where the following values have been used as inputs:
MB0

d

/MB0
s

= 0.98390 [5] with negligible uncertainty,

∆md = 0.505± 0.005 ps−1 [5] and ξ = 1.21+0.047
−0.035 [18].
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!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM
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 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 
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Figure 12: Combined likelihood ratio as a function of ∆ms

(CDF).

provide information about the B0
s production flavor.

A significant peak in the amplitude scan consistent
with unity is observed. Assuming this is a signal for
B0

s − B̄0
s oscillations, CDF measures

∆ms = 17.31+0.33
−0.18 (stat.) ± 0.07 (syst.) ps−1 .

The B0
s−B̄0

s oscillation frequency measured at CDF
is used to derive the ratio |Vtd/Vts|,
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where the following values have been used as inputs:
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= 0.98390 [5] with negligible uncertainty,

∆md = 0.505± 0.005 ps−1 [5] and ξ = 1.21+0.047
−0.035 [18].
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Figure 3: Plotting the form facto shape for B → πlν decay
versus a well chosen new variable z (instead of t ≡ q2) pro-
duces a function that is linear to the accuracy of existing
data, and can thus be describe with only two parameters.

4. Meson Mixings

Matrix elements for BB and BsBs mixing are con-
ventionally parameterized in terms of the meson de-
cay constants and bag parameters, as in the kaon sys-
tem. What is actually calculated on the lattice, how-
ever, are the combinations fB

√
BB and fBs

√
BBs .

Since, these combinations are what is needed for phe-
nomenology, these are what lattice theorists should be
reporting.

Unquenched results were reviewed at Lattice 2005
by Okamoto [5]. Since unquenched results using stag-
gered fermions had not yet appeared, he took results
for bag parameters from JLQCD using two flavors of
clover quarks,

B(mb) = 0.836(27)(
+56
−62

) (9)

and

B̂s/B̂ = 1.017(16)(
+56
−17

). (10)

For his best estimate of the combined matrix ele-
ments, he combined these with the HPQCD, staggered
fermion results for the decay constants already dis-
cussed, and obtained

fB

√
B̂B = 244(26) MeV (11)

and

ξ = fBs/fB

√
B̂s/B̂ = 1.210(

+47
−35

). (12)

Following this same procedure, one can obtain for the
Bs

fBs

√
ˆBBs = 294(33) MeV. (13)

This quantity and ξ are the combination of BB mixing
quantities with uncertainties that are most indepen-
dent of each other.

Lifetime differences require a different operator
than the one for the mass difference. Unquenched
calculations of matrix elements for this operator do
not yet exist. The required operator has been given
as part of the complete set of four-quark operators, in-
cluding those arising in supersymmetric theories, and
initial results have been reported in the quenched ap-
proximation [17].

5. Effect on the ρ − η plane

5.1. Effects of Lattice Fermion Methods

In this talk, I have emphasized staggered fermion
results because they are for the most part fully un-
quenched, with the right number of light quark fla-
vors, and with light quarks masses much closer to their
physical values. Other lattice theorists have a prefer-
ence for other fermion methods, and the lattice com-
munity is not yet settled on the optimum approach.
Another widely used set of numbers for BB mixing pa-
rameters comes from the CERN CKM study of 2003
[18] (based on the 2002 review of Lellouch [7])

fB

√
B̂B = 235(33)(

0
24

) (14)

fBs

√
B̂Bs = 276(38) (15)

ξ = 1.18(4)(
12
0

). (16)

These were based on a set of mostly clover lat-
tice results, most in the quenched approximation but

fpcp06 312

Another widely used set of numbers for B mixing,
CERN CKM study, 2003.
Based on Lellouch, 2002.

Mostly clover fermions,
mostly quenched,
some nf=2 used to extrapolate to 
nf=3 light quarks.

Compatible with staggered fermion 
results, but with larger uncertainties.

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy
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! fits with S!PT, !PT, linear ansatz

=⇒ only 3% difference

insensitive to fit form with mq<ms/2

deviation from JLQCD(n f=2) linear fit

fB = 216(9)sta+!fit(19)PT(7)othersMeV
total 10% (PT O("2) error largest )

fBs/ fB = 1.20(3)sta+!fit(1)others
PT error cancel =⇒ total 3%

Remember...
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The collaborations CKMfitter and UTfit are responsible for most of the 
CKM global fits.
They use different statistical methods and obtain somewhat different 
results.  

E. g., for expected Δms  without using experimental result:
    CKMfitter: 21.7 +5.9/-4.2 ps-1,
      UTfit: 21.5 +/- 2.6 ps-1.

Puzzling: both use same lattice inputs (the CERN 2003 numbers).

Main differences: different statistical methods (Bayesian or not) and 
combinations of inputs (some lattice quantities are highly correlated).
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

A new operator emerges:

QS = bRsL bRsL

〈Bs|QS |Bs〉 = − 5
12

M2
Bs

M2
Bs

(m̄b + m̄s)2
f2

Bs
BS

Our 1998 prediction including corrections of order αs and ΛQCD/mb:

(
∆Γ
Γ

)

Bs

=
(

fBs

210 MeV

)2

[ 0.006 B + 0.172 BS − 0.063]

= 0.14 ± 0.05.

Pathological situation: Both the 1/mb and αs corrections are large and

decrease ∆Γ, leading to large uncertainties. Moreover BS dominates over B,

so that ∆Γ/∆m depends on BS/B.

Ulrich Nierste B−B mixing: mass and width differences and CP violation page 15

Van Kooten
FPCP 2006

New operator needed:

Not done unquenched, but Becirevic et al., 01, have calculated the 
complete set of four-quark operators quenched:

J
H
E
P
0
4
(
2
0
0
2
)
0
2
5
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1. Introduction

This paper is devoted to a combined analysis of the matrix elements of the complete set of
∆B = 2 operators, which we computed on the lattice in both the static limit of the heavy
quark effective theory (HQET) and in standard lattice QCD (with Wilson fermions). All
five operators enter the phenomenological analyses of supersymmetric (SUSY) effects that
might affect the Standard Model (SM) expectations for ∆mBd and/or ∆mBs . It is therefore
convenient to work in the so-called SUSY basis of operators [1]:

O1 = b̄iγµ(1 − γ5)qi b̄jγµ(1 − γ5)qj ,

O2 = b̄i(1 − γ5)qi b̄j(1 − γ5)qj ,

O3 = b̄i(1 − γ5)qj b̄j(1 − γ5)qi ,

O4 = b̄i(1 − γ5)qi b̄j(1 + γ5)qj ,

O5 = b̄i(1 − γ5)qj b̄j(1 + γ5)qi , (1.1)

where the superscripts denote colour indices, and q stands for either d- or s- light quark
flavour. The first of the above operators has been widely studied over the last decade, since
it is crucial for the SM description of the B0 − B0 mixing amplitude, whereas O2 and O3

were also recently studied because they are relevant for the SM estimates of the relative
width difference in the neutral B-meson system, (∆Γ/Γ)Bs

[2].

– 1 –

J
H
E
P
0
4
(
2
0
0
2
)
0
2
5

◦ We used the two-loop running coupling αs(µ) by taking Λ(nF =0)
QCD = 0.25GeV. We tried

to vary Λ(nF =0)
QCD by 10% (which covers all the presently available lattice estimates [32]),

and see that the final results vary in the range of ±1.5%.

We now write our results in a fully explicit form as:

B(d)MS
1 (mb) = 0.87(4)(3)(0)

(
+4
−2

)
, B(s)MS

1 (mb) = 0.87(2)(3)(0)
(
+4
−2

)
,

B(d)MS
2 (mb) = 0.83(3)(3)(1)(2) , B(s)MS

2 (mb) = 0.84(2)(3)(1)(2) ,

B(d)MS
3 (mb) = 0.90(6)(3)(7)(2) , B(s)MS

3 (mb) = 0.91(3)(3)(7)(2) ,

B(d)MS
4 (mb) = 1.15(3)(4)

(+0
−4

)
(3) , B(s)MS

4 (mb) = 1.16(2)(4)
(+0
−4

)
(3) ,

B(d)MS
5 (mb) = 1.72(4)(5)

(
+19
−00

)
(3) , B(s)MS

5 (mb) = 1.75(3)(5)
(
+20
−00

)
(3) , (4.1)

where, besides the first statistical errors, the following sources of the systematic uncertainty
are being written out respectively: systematics of the calculation in the static limit of
HQET, the error in the renormalization of B-parameters computed in QCD, combined
error due to the variation of a−1 and of Λ(nF =0)

QCD (and also due to the improvement of the
axial current in the case of B1). After adding all systematic errors in squares we arrive at
the complete set of results already given in table 1.

To be able to fully reconstruct the numbers that we presented in table 1, we also need
to provide the reader with the formulae allowing the conversion of the parameters B2(mb)
and B3(mb) from the MS(NDR) scheme of ref. [11] to the one of ref. [9]. This is achieved
by using the following formula

(
〈O2(µ)〉
〈O3(µ)〉

)MS [9]
=

[
I +

αs(µ)
12 π

(
−11 1
1 5

) ] (
〈O2(µ)〉
〈O3(µ)〉

)MS [11]
, (4.2)

which we obtained after rotating the operators QSLL
1,2 (µ)MS of ref. [9] to the SUSY ba-

sis (1.1).

5. Concluding remarks

In this paper we computed the B-parameters for all five ∆B = 2 operators. The extrapo-
lation of the results obtained directly in lattice QCD in the region of masses mP ∼ 2GeV
to the physically interesting mass mBd/s

, has been constrained by using the static HQET
result. The matching QCD ↔ HQET and running in each of the two theories have been
made by the consistent use of the perturbative expressions known at NLO. The final results
are presented in three renormalization schemes (see table 1).

Our results can be improved in many ways. We combined the results of the QCD lattice
simulations performed at β = 6.2 with the HQET ones obtained at β = 6.0. Naturally, a
good strategy would be to do the computation at the same value of β in both theories, to
vary the value of β (i.e. of the lattice spacing) and attempt extrapolating to the continuum
limit. Such a study is important because it would allow one to eliminate the discretization

– 19 –

Now must be repeated, unquenched.

BsBs Mixing
_
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B→ D(∗)l! decay

B(B→ D(∗)l!) " |Vcb|2|FB→D(∗)(1)|2
Z
dw f (∗)(w)

where w= vB · vD. Use double ratio (FNAL’99): C
DV0B(t)CBV0D(t)

C
DV0D(t)CBV0B(t)

→ 〈D|V0|B〉〈B|V0|D〉
〈D|V0|D〉〈B|V0|B〉

B→ Dl!

n f =2+1, FNAL/MILC
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=⇒ more precise |Vcb|

B→ D(∗)l! decay

B(B→ D(∗)l!) " |Vcb|2|FB→D(∗)(1)|2
Z
dw f (∗)(w)

where w= vB · vD. Use double ratio (FNAL’99): C
DV0B(t)CBV0D(t)

C
DV0D(t)CBV0B(t)

→ 〈D|V0|B〉〈B|V0|D〉
〈D|V0|D〉〈B|V0|B〉

B→ Dl!

n f =2+1, FNAL/MILC

0 0.01 0.02 0.03

m
l

1

1.1

F
(1

)

N
f
=2+1 (FNAL/MILC)

N
f
=0 (FNAL’99)B!>D

FB→D(1) = 1.074 (18)sta(15)sys

Using HFAG’04 avg for |Vcb|F (1),
|Vcb|Lat05=3.91(09)lat(34)exp×10−2

B→ D∗l!

S#PT calc. completed (Laiho’s talk)

0 0.025 0.05 0.075 0.1 0.125 0.15
m_pi^2

0.89

0.9

0.91

0.92

0.93
h
_
A
1

Cusp (in #PT) disappears in S#PT

n f = 2+1 calc. underway (FNAL)
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Heavy quark theory: normalization →1 in the HQ symmetry limit. 

Form factor shape is well-measure in experiment.
Theory must supply the normalization.

But, high precision is required.

Ratio method: determine the form factor from a ratio that goes to 1 with vanishing errors in the 
symmetry limit.

Fermilab, 99.
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K→πlν
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Similar situation.  Amplitude is normalized to 1 in the (chiral) symmetry limit.

Rome (Becirevic et al.) 04: try the same approach as for B➞πlν, the ratio method.

Leutwyler-Roos quark model 0.961(8)

Becirevic et al. nf=0 0.960(5)(6)

JLQCD nf=2 0.952(6)

Fermilab/MILC nf=2+1 0.962(6)(9)

RBC nf=2 0.964(9)(5)

No surprises from lattice theory.  
Recent results from Kl3 experiment give good first row unitarity.

f+(0):
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

q2/mDs*
2

0

0.5

1

1.5

2

2.5

f +(q
2 )

0

q2
max/mDs*

2

experiment [Belle, hep-ex/0510003]
lattice QCD [Fermilab/MILC, hep-ph/0408306]

D → Klν

A prediction: shape of the D→K lν form factor, measured by FOCUS, 
BaBar, and Belle.

CLEO-c is threatening to drastically improve. → More stringent tests.
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!"#$%&'"())* ()+,"-.'&/0"1 2-3-"45/6.789%

!"# 5/:"!"$ +9;7'<;-+=>?@?A#+B

3.CD&/9"E!"%&'F)G"H&<I">J3K"85'79"L.%"'F)G

-+>"!"M")NN*)N"F())OG

-%96&;&./"6.C$5%5D'9"<."9P6'7;&89;"H&<I"<50;Q"C76I"&/:9$9/:9/<"

&/L.%C5<&./,""3.CD&/9:"%9;7'<;"H&''"0&89"D9;<"$%96&;&./,

Apply: determine CKM elements.

CLEO-c.  R. Poling, FPCP 2006.
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CLEO-c/lattice charm physics goals:
- Test lattice amplitude calculations on CKM independent combinations of amplitudes.
- Use tested lattice calculations to obtain new CKM determinations.

Leptonic/Semileptonic ratio

CKM factor |Vcq| canceled in the ratio ( =⇒ a good test of LQCD):

Rcd ≡

√
B(D→ l!)

B(D→ "l!)
#

fD

fD→!
+ (0)

· |Vcd|/

|Vcd|/

LQCD(n f = 2+1), FNAL/MILC
Rcd = 0.22(2)

Exp’t, CLEO-c’05 etc

Rcd = 0.25(2)

200 250

f
D
 [MeV]

2 3 4 5

Br(D!>!l")x10
3

0.20 0.25

R
cd

Exp’t

LQCD

CP!PACS

PDG’04
(CLEO’05)

(FNAL/MILC)

Agree with Exp’t for D physics. =⇒ credibility for B physics

Test lattice:

Rcd=0.22(2) Fermilab/MILC 
nf=2+1

Rcd=0.25(2) CLEO-c
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B→ !l" with n f = 2+1 LQCD

FNAL/MILC stag light + FNAL heavy mvall = mseal Mackenzie’s poster

HPQCD stag light + NRQCD heavy fixed mseal Gulez’s talk
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q
2
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2
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N
f
=3 (HPQCD)

N
f
=3 (FNAL/MILC)

B!>!l"

f
+

f
0

Systematic error FNAL/MILC HPQCD

ml extrapolation 4% 4%

current matching 1% 9%

q2 dependence 4% -

finite-a, 1/mQ 9% 5%

Total syst 11% 11%

Using branching ratio B(q2 ≥ 16 GeV2) by CLEO’03+Belle’04,

|Vub|×103 = 3.48 (29)sta(38)sys(47)exp [FNAL/MILC; (8+11+13)%=19% error]

|Vub|×103 = 4.04 (20)sta(44)sys(53)exp [HPQCD; (5+11+13)%=18% error]

Lattice data cover on 1/3 of physical q2 range.
More challenging to compare with experiment than 
anything else covered in this talk.
Errors in theory and experiment are highly q2 dependent.

I’ll discuss here how to go beyond current methods, 
rather than current results.

Approaches:

- Moving NRQCD (HPQCD)
- Add SCET point at q2 =0 (Arnesen et al.) 3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(

q2(Eπ)
)

=
gfBmB

2fπ(Eπ+mB∗−mB)

[

1+ O
(Eπ

∆

)]

, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38 ± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)

+0.00887a5 = f0/|Vub| ,
37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13 ± 0.21 ± 0.58) × 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|
Br δ|Vub|

q2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop → 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|
Br, and from using the dΓ/dq2 spectrum, δ|Vub|

q2

.
For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-

tion through χ(0)
f+

are compensated by shifts in the an co-
efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

Arnesen, Rothstein, Grinstein, and Stewart
add SCET point at q2=0 to lattice data, use 
unitarity and analyticity to bound form factor.

What do unitarity and anlyticity alone say?
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2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

( t =q2 = (pH-pL)2,  t+ = (mH+mL)2, t- = (mH-mL)2).

B->π l ν:   -0.34<z<0.22,
D->π l ν :  -0.17<z<0.16,
D->K l ν :  -0.04<z<0.06,
B->D l ν :   -0.02<z<0.04.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
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=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4
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+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
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B∗) for f+ due to the B∗ pole. Finally, the
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√
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) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
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, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
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=
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑
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a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
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γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].
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in, which
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dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:
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in = f+(18.58) = 1.128± 0.086 ± 0.124 ,
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Unitarity bounds the coefficients.

z series converges rapidly.
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section is not appreciably altered if additional terms are included.

3 Form factor bounds

To make a fully rigorous determination of |Vub|, the truncation to the three-parameter classes
of curves considered in the previous section requires justification. For instance, if the neglected
terms in (2) or (5) conspired to produce a sharp peak in the form factor at precisely the value
of the lattice input point, then the integrated rate would be overestimated, and the value of
|Vub| underestimated. To prevent this from happening requires some bound on the perversity
of allowed form factor shapes. In practice, we would like to ensure that our extraction of
physical observables is “model-independent” by allowing for arbitrarily many parameters, i.e.,
taking N → ∞ in (2) and kmax → ∞ in (5). Retaining predictive power then demands that a
bound be enforced on the parameters appearing in these expansions.

To bound the coefficients ρk in the expansion (2), we introduce a decomposition of the
integration region, t+ ≤ t1 < · · · < tN+1 < ∞, and define

ρk ≡
1

π

∫ tk+1

tk

dt

t
ImF+(t) , γk ≡

tk
m2

B∗

. (7)

Since F+(t) ∼ t−1 at large t, it follows that

∑

k

|ρk| ≤
1

π

∫

∞

t+

dt

t
|F+(t)| ≡ R , (8)

and this is the desired bound. The integral in (8) is dominated by states with t − t+ ∼ mbΛ,

where F+ ∼ m1/2
b , so that the quantity R is parametrically of order (Λ/mb)1/2, with Λ a

hadronic scale. To be sure that the bound deserves the model-independent moniker, one
should use a very conservative estimate. In our fits we will use R ≤

√
10 and R ≤ 10, i.e., we

allow for an addition factor of 100 or 1000 beyond the dimensional estimate R2 ∼ Λ/mb ∼ 0.1.
The coefficients ak in the expansion (5) can be bounded by requiring that the production

rate of Bπ states, described by the analytically continued form factor, does not overwhelm
the production rate of all states coupling to the current of interest (in this case, the vector
current ūγµb). The latter rate is computable in perturbative QCD using the operator product
expansion (for a pedagogical discussion, see e.g. [10]). The function φ in (6) was chosen such
that the fractional contribution of Bπ states to this rate is given at leading order by

∞
∑

k=0

a2
k =

1

2πi

∮

dz

z
|φ(z)P (z)F+(z)|2 =

m2
b

3

∫

∞

t+

dt

t5
[(t − t+)(t − t−)]3/2|F+(t)|2 ≡ A . (9)

In the heavy quark limit, the leading contributions to the integral A in (9) are of order (Λ/mb)3

and arise from two regions: the region close to threshold, t − t+ ∼ mbΛ, where the pion has
energy E ∼ Λ and the form factor scales as F+ ∼ m1/2

b ; and the region t − t+ ∼ m2
b , where

E ∼ mb and F+ ∼ m−3/2
b (for a discussion of the form factor scalings, see [12]). The region of

very high energies t ( m2
b , where F+ ∼ 1/t, gives a subleading contribution.
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Two (maybe three) terms should suffice in power series for 1% accuracy 
in form factors.  Current experiment and lattice shape data agree.
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

If Becher and Hill are right, comparing shapes between theory and experimental form factors 
could be almost as simple for B->πlν as for B->Dlν and K->πlν:

1) Measure normalization and slope,
2) Search for evidence of curvature.
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Summary

• There is currently more activity and progress in methods 
and algorithms than there has been since 20 years ago.

• 10s of teraflops in CPU power devoted to lattice QCD 
are now coming on line.

• Many of the most important results for phenomenology 
are among the cleanest lattice calculations (such as 
pseudoscalar meson decay constants and mixings).
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We’re in a period of rapid development for lattice QCD that shows 
no signs of slowing down.


